Two Applications of Topological Dynamics
in Combinatorial Number Theory

The shift system and the Stone-Cech compactification of the
non-negative integers

by Jan de Vries

In Combinatorial Number Theory, various results say that if Z* is parti-
tioned into finitely many sets, then one of those sets is large in some sense.
Theorems of this type were obtained by Hilbert, Schur, Van der Waerden,
Rado and Hindman among others (see [9] and its references). For example, in
Van der Waerden’s result, ‘large’ means: containing arithmetic progressions of
arbitrary finite length. In this paper, proofs of Van der Waerden’s Theorem
(2.6 below) and Hindman’s Theorem (4.1 below) will be given using methods
from Topological Dynamics.

This paper will also illustrate certain techniques from ‘abstract’ Topological
Dynamics, i.e. Topological Dynamics in the tradition of, say, Gottschalk and
Hedlund and of Robert Ellis (see [10], [7]). Roughly, Topological Dynamics
can be described as the discipline in which one studies asymptotic and
recurrence properties of points in a topological space under the action of a
group of homeomorphisms or a semigroup of continuous mappings. A histori-
cal sketch of this field of mathematical research falls outside the scope of this
paper. Let me just say that Topological Dynamics, together with Ergodic
Theory, originated from the qualitative theory of differential equations; see for
instance [15] or the introductions of [3] or [18] for brief historical sketches.
The results that will be presented in this paper are from ‘abstract” Topological
Dynamics, i.e. there is no direct relationship with the theory of differential
equations.

Finally, this paper may be seen as an attempt to persuade the reader to
have a look in the beautiful book [8] (although there the main role is played by
Ergodic Theory) or at least the paper [9]. Essentially, the present paper is
based on [9]; in particular, the proof of Van der Waerden’s Theorem is taken
from [9]: T have included it just to show how elegantly it follows from an
admittedly rather deep dynamical result. The proof of Hindman’s theorem is
different from the one in [9); as far as I know, the present proof does not
appear in the existing literature. I learned it from a discussion with Dr. B. Bal-
car (Prague).

The paper is essentially self contained (except for the proof of the Multiple
Recurrence Theorem, i.e. Theorem 1.4 below). It can be read by anybody who

knows some elementary topology and the basic properties of ultrafilters (sum-
marized in Section 4).



1. Introduction

A dynamical system is a pair (X,T) with X a compact Hausdorff space and
T:X—X a continuous mapping. A homomorphism of dynamical systems
¢:(X,T)—>(X’,T’) is a continuous mapping ¢:X —X’ such that ¢oT = T'o¢p.
Most of the dynamical properties of a dynamical system are preserved by
homomorphisms; the proof that this is so for the notions to be defined below
(orbit, orbit-closure, recurrence, almost periodicity) will be left to the reader.

Let (X,T) be a dynamical system. The orbit of a point x in X is the set
O(x) := {T"x'neZ"}; here T" is the n’th iterate of T, so T":= ToT" !
(n =23,..), while T':= T and T® = idy. The orbit-closure of x is the clo-
sure O(x) of the orbit O(x). A point x in X is called recurrent whenever it is
in the orbit-closure of x. Equivalently, x is recurrent iff for every nbd(=
neighbourhood) U of x there exists n =1 such that T"x € U. Clearly, if x is a
recurrent point, then for each nbd U of x the set of ‘return times’

R(x,U):= {neZl* :n=1& T"xeU)}

is infinite. It is easy to see that if the space X is metrizable, then a point x is
recurrent iff there is an increasing sequence n,ny,... in Z* such that
x = limT"x.
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Recurrent points do exist abundantly. The easiest way to prove this is by
invoking the axiom of choice. In fact more will be shown, namely, that uni-
formly recurrent (terminology of e.g. [2] and [8]) or, as I will call them (termi-
nology of e.g. [7], [10] and [17]), almost periodic points exist. A point x in X is
called almost periodic whenever for each nbd U of x the set R(x,U) has
bounded gaps. This is equivalent to saying that for every nbd U of x there
exists / >0 such that

VneZ* Ire{0,.l}: T" "xel.

(It has been remarked that a periodic point returns to itself every hour exactly
on the hour; but an almost periodic point returns to a nbd every hour within
the hour.) There is a nice characterization of almost periodicity in terms of
minimal subsets. A closed subset A of X is called minimal whenever A2, A
is invariant (that is, TA CA) and A has no closed invariant proper subsets. It
is easy to show that a non-empty subset A of x. is minimal iff O(x) = 4 for
every x €A . (Note that orbits and their closures are invariant.)

1.1. LEMMA. Let (X,T) be a dynamical system. Every non-empty closed
invariant subset of X contains a minimal subset.

PROOF. Apply Zorn’s lemma to the partially ordered (with respect to
inclusion) family of all non-empty closed invariant subsets of X. This family is
not empty (X belongs to it), and the intersection of a chain in it is non-empty
because X is compact. [J

Here is the promised characterization of almost periodicity; the result is a form
of Birkhoff’s Recurrence Theorem:



1.2. PROPOSITION. Let (X,T) be a dynamical system and x € X.

The following statements are equivalent:
(i) x_is an almost periodic point;
(ii) O(x) is a minimal set.

PROOF. (i)=(ii): Clearly, O(x) is non-empty, closed and invariant. It
remains to prove that if y €O (x) then x €O(y). Let U be a nbd of x. Almost
periodicity of x implies that there exists />0 such that for every i €Z, T'"'x
e U for some r €{0,...,/ }; that is

_ i
T'xe U T U]

So O(x)CU!_(T7'[UL, hence O(x)CU/_oT "[U]. Consequently, if
y€O0(x), then T'yeU for some re{0,.,/} and this means that
UNO(y)#@. As every nbd W of x includes the closure of some smaller nbd
of x, this implies that W NO(y)# @ for every nbd W of x. Hence x €O (y).

(ii)=>(i): Let U be a nbd of x. By minimality, one has for every z €O (x)
that x €0(z), hence UNO(z)7@, ie. zeT "[U] for some r €Z". This
shows that O(x)CU 2, T "[U], and compactness implies that O(x) can be
covered by finitely many of the sets 7 "[U], say with r €{0,...,/}. In particu-
lar, for each ne€Z™ there exists r €{0,...,/} such that T"x €T "[U], hence
T"'xelU. O

1.3. COROLLARY. Let (X,T) be a dynamical system. Every non-empty
closed invariant subset of X, in particular X itself, contains an almost periodic
point. UJ

Remark. Since homomorphisms of dynamical systems preserve almost
periodicity (this is almost trivial), it follows from 1.2 that homomorphisms
preserve minimal sets: if ¢:(X,T)—(X’,T’) is a homomorphism and M is a
mimimal subset of X, then ¢[M] is a minimal subset of X’. (Of course, this
can also be proved rather easily directly!)

As every almost periodic point is recurrent, it follows from 1.3 that every
dynamical system has recurrent points. Other proofs of this fact are possible,
e.g. using the existence of an invariant measure (the Poincar¢ Recurrence
Theorem). The following result is much stronger, although its validity is res-
tricted to metrizable spaces (as long as one is not willing to use ‘exceptional’
axioms like Martin’s Axiom). If X is a compact Hausdorff space and if for
j = 1.0 T;:X—-X is a continuous mapping, then a point x in X is called
multiply recurrent (under T),...,T;) whenever for each nbd U of x there exists
n =1 such that T;'x eU for j = 1,..l. If X is metrizable, then x is multiply
recurrent under T,...,T; iff there exists an increasing sequence 711,/,... in z+t
such that x = lim T;"x for j = 1.l

i —0o0

1.4. THEOREM. Let X be a compact metrizable space, and for j = 1...1,
let T;:X—X be mutually commuting continuous mappings. Then there exists a
mutually recurrent point in X.



PROOF. See [9], or [8] Chapter 2. O

In the next section, we describe an application of this result due to H. Fursten-
berg and B. Weiss (see [9]).

2. Symbolic dynamics

An important source of examples are the so-called shift systems and their sub-
systems. For literature on these systems, see for example [14] and its refer-
ences. For applications to the investigation of Anosov diffeomorphisms, see [4],
and for applications in coding theory, see [1]. We shall use the shift system
mainly for illustration of the notions defined in Section 1.

2.1. Let S be a finite set, say S = {0,..., s —1} with s =2, and let 2:=57,
the space of all (one-sided) infinite sequences (£(0),£(1),£(2),...) with &n)eS for
n=0. With the usual product topology, @ is a compact Hausdorff space,
homeomorphic with the Cantor discontinuum. A basis for the nbd system of a
point £ in £ is formed by the set of all so-called cylinders, i.e. all sets of the
form

[£0),....8(k)] := {neQ: (i) = &i)fori = 0,....k}
with keZ™.
The (one-sided) shift on € is the continuous mapping ¢:2— given by
(6®) (n):= &n+1) forneZ”

where £ = (§(n)),cz* in 2. Thus, o shifts sequences £ one place to the left.
Note that ¢ is an s-to-one mapping: the s possible values for £0) do not affect
the value of ¢£. (In a similar way, a two-sided shift can be defined on the space
SZ, and this is a homeomorphism.) We consider the dynamical system (£,6).

Observe that for £{nef and ke€Z’ one has o' n€[£0),...,£k)] for some
reZ” if and only if the finite sequence (‘block’) £0),....£(k) occurs in 7 at
place r, that is, if and only if £(i) = n(r +i) for i = 0,..,k. Using this, the
following observations are easy to prove:

2.2. OBSERVATIONS. (i) 4 point £ in @ has a dense orbit iff every finite
block over S occurs in & at some place.

(ii) 4 point & in Q is recurrent iff every block which occurs in § occurs infinitely
often in &

(iii) A point £ in Q is almost periodic iff each block B which occurs in § occurs
with bounded gaps, that is, there exists a number 1>0 such that every block of
length [ in § contains a copy of B.

23. In view of the characterizations mentioned in 2.2, the following facts
are almost trivial:
(i) There exists a point in Q@ which has a dense orbit: let B,B,,.. be an enumera-
tion of all possible finite blocks. Then the point

&) = B]Bz...,

i.e. the sequence which is obtained from concatenation of all blocks B;, has a
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dense orbit by 2.2 (1).

(ii) The point &, defined in (i) is recurrent: let B be a block which occurs in &
then B occurs in some beginning block B’ := B..B; with keN. In the
sequence of all blocks By,B,.... the block B’ has a place with index =k +1.
Hence the original block B occurs in ¢ also at some place =k + 1. Repetition
of this argument shows that B occurs infinitely often in . So by 2.2(ii) the
point &, is recurrent.

Remark. If 7 is an arbitrary recurrent point of € and B is an arbitrary
block from the beginning of n, then by 2.2(ii) there is a block C such that
n = BCB.... Repeating this procedure, starting with the l-element block a
given by a = 4(0), we see that

71 = {(aC,a)C(aCa)}C;{(aCa)CyaC,a)}..

for certain blocks C,Cs..... Conversely, every sequence n with this structure is
recurrent.

(iii) The set Q is not minimal under the shift: there are many non-empty
closed invariant subsets, e.g. the (finite) orbits of the periodic points, ie. all
sequences which have the following form:

¢ = BBB..B..

for some finite block B. (Note that the set of periodic points is dense in §: if
¢€Q, then the cylindrical nbd [£(0),....£(k)] of & contains the periodic point
¢ = BBB.. with B := &0)..&k).) So it follows from 1.2 that the point &
defined in (i) above is not almost periodic.

Remark. It follows immediately from Observation 2.2(iii) that a recurrent
point of the form

7 = {(aC1a)CyaCa)}Cs{(aC1a)CxaCa)}...

is almost periodic iff the blocks C|,C,.. have bounded lengths. All kinds of
methods have been invented to produce almost periodic points in £ (ie.
minimal orbit-closures) and points whose orbit closures have other
topological-dynamical or ergodic properties. For an important method - substi-
tutions - cf. [19]. A famous almost periodic point is the so-called Morse
sequence

01 10 1001 10010110

B, B,
L__—_v-——/ ,
B, B,
<

B3 B,

(Here B’ denotes the block which is obtained from B by replacing every 0 by
a 1 and every 1 by a 0).

(iv) Although there are many recurrent points (it can be shown that they form a
residual subset, i.e. they contain a dense Gg-set; cf. [10], 7.15 and 12.24(2); this



Jollows also rather easily from the description given in (ii) above), there are also
many non-recurrent points; €.g. the point 101001000100001- is not recurrent.

2.4. For the proof of the next theorem, it will be convenient to use the fol-
lowing metric d on {:

+ F ARY: lif &
e _{ min {n e (n)#nn)})~ lf;‘-"z.

It is straightforward to verify that 4 is a metric. In addition, for every §€ one
has

[60),-.£00)] = (1€} dEm<7i

This implies immediately that d is compatible with the topology of §2. The fol-
lowing special feature of the metric d will be needed: if £meQ and d(§m)<l,
then £0) = 2(0).

2.5. Elements of £ can be used to describe partitions of Z* as follows.
Suppose Z* = BoU..U B, with B;NB; = @ for i#j. Let S:=
{0,.,g—1}and @ : = Sl and consider the pomt £ = (&n))yez+€Q with

(n):=i if neB; (i =0,.49—1)

Thus, & reglsters the ‘colour’ i for each neZ™. Conversely, it is clear that
every point £ in © defines a partition of Z* into ¢ disjoint subsets such that
the given point £ gives the ‘colouring’ of this partition. This correspondence is
the basis of the proof of the following theorem.

2.6. THEOREM (Van der Waerden). Let Z' = ByU... UB,_ with
B;NB; = & for iz=j. Then one of the sets B; contains arithmetic progressions
of arbitrary length.

PROOF. ([9], [10]). It is sufficient to show that for every /eZ*, /50,
there exists an index i (/)€ {0,...,¢ — 1} and numbers n, m €Z" (also depending
on /) such that m +jn €B;, for j = 0,..,/. Indeed, since there are only ¢
possible values for i(/), there is ipe{0,..,4 —1} such that i(/) = i, for infin-
itely many values of / in Z*; then B;, contains arithmetical progressions of
arbitrary length.

Let @:= {0,...g — l}z* and form £, corresponding to the given partition
of Z* as indicated in 2.5. Let X:= O(&) and let for any given integer />0
and j = 1,..,/ the mappings T;:X—X be defined by T; := (olxY. Then the
continuous mappings T,...,T; satisfy the hypothesis of Theorem 1.4, so there
exists a point n€ X and an increasing sequence 7 ,n,... such that

Ti*g—n for k—oo (j = 1,..0).

Consequently, there exists n €N such that the points 9, 19, T3, ..., Ti'y, that
is, the points

7, d'y, e*', ..., &'



have mutual distances <3. By continuity of the maps o/, j = 0./, there
exists a nbd V of 7 in  such that for each 7'V the points

7, o', ", ..oy
also have distances <%. AsnmeX = 0(&), VNO(E)+# 3, hence o™ eV for
some m €Z ", and the points

0’"‘5{)’ 0m+n£0’ om+2n§0, . Om+l"§0

have distances <73. By the last remark of 2.4, these points have equal zero'th
coordinates, that is,

&(m) = &(m+n) = &(m +2n) = ... = &(m +in).

If we denote this value by i(/), then this shows that the set B, contains the
arithmetic progression m, m +n, m+2n, ..., m +In of length / +1. [

3. The semigroup 8Z*

In this section the basic elements will be discussed of a machinery that is one
of the corner stones of abstract topological dynamics. For a thorough discus-
sion in a general context see [7] (or [5]). In this paper, we will develop just
enough of this machinery to present a very elegant proof of Hindman'’s
Theorem (Theorem 4.1 below). The key idea is to consider a natural semigroup
structure on the Stone-Cech compactification of Z* (denoted BZ*) and to
relate dynamical properties of a point in a dynamical system with the algebraic
structure of BZ*.

3.1. For those who do not use the concept of Stone-Cech compactification
in their daily work, a few basic facts will be recalled.

The space BZ* is a compact Hausdorff space which contains Z* as a
dense subspace. It is characterised by the following ‘universal’ property: every
mapping y:Z" —X with X a compact Hausdorff space has a unique continu-
ous extension y:B8Z " —X. For a proof that a space BZ* with these properties
exists and is unique up to homeomorphism, the reader is referred to introduc-
tory topology textbooks. Concerning a useful model for BZ* some remarks
will be made in Section 4 below.

3.2. The universal property of BZ* mentioned above implies that for every
neZ* the mapping

& kontk:2t->2tCpzt

has a continuous extension to BZ*, which will also be denoted by «". The
value of £eBZ* under " will be denoted by n ©&:

W' Gen®E: BT SBZT. (1)
This implies that for every §€BZ " the mapping
wg: nen®& Tt pZ*

is well defined. It has a continuous extension, denoted by



wg: pon®E: BT BT *. ¥))
Now a mapping w:BZ* XBZ* -BZ™" can be defined by

o) := wfn) = n®dE for {nepz™

Note that w extends the addition in Z* to all of BZ*. It can be shown that w
is not commutative on SZ*. Related to this is the fact that all right transla-
tions w;mon®¢: BZY-PZ* for £ePZ™ are continuous (cf. (2) above), but
not all left translations w": &sn®¢: BZT—-BZ" for weBZ™ (notice the place
of £ and n as sub- respectively super-script). In particular, :BZ*
XBZ*—-BZ* is not continuous. (For each neZ*, &" is continuous (cf. (1)
above), and no doubt the BZ * -specialists have figured out characterizations for
those points neBZ* \ Z* for which " is continuous, but until now I have
found none in the literature.) The ‘addition’ w in BZ™ is associative. The
straightforward proof is as follows: for all m,n€Z* the continuous (!) map-

pings
"t b (m +n)®E
@™ ow": {rom B(n @{)}: L' -pT”

are equal to each other on the dense subset Z* of BZ* (associativity of addi-
tion in Z*). Hence they are equal on all of BZ*. This means exactly that for
all meZ™ and {€BZ™ the continuous (!) mappings

wew™ : g(m D) B§ . .
W™ oweimm S (DY) PRL—p2

are equal on Z*. Hence they coincide on all of SZ*. This can be rephrased by
saying that the continuous mappings w°w, and w,e; are equal on Z*. Hence
they are equal on BZ*, which means that (¢®n)®¢ = £DBnDY) for all &y
and ¢ in BZ7.

Conclusion: (8Z*,®) is an (associative) semigroup in which Z% is a dense sub-
semigroup. All right translations w; with £eBL™ are continuous, and so are the
left translations " withneZ.

33. Let T:8Z*—>BZ* be defined by T := ', that is T¢:=1®¢ for
¢eBZ™. Then (BZ™,T) is a dynamical system. The following proposition gives
a relationship between dynamical properties of (8Z*,T') and algebraic proper-
ties of the semigroup (BZ*,®). First we need two definitions. An idempotent
in BZ™ is an element ¢ such that £§®¢ = £. A left ideal in BZ™ is a non-empty
subset K such that BZt®K CK (if P,Q are subsets of SZ*, then of course
PO®Q := {(Dn : teP & neQ); similarly, POy := ((Dn feP} = o][P],
etc.). A minimal left ideal is a left ideal which does not properly contain any
other left ideal. Since for every left ideal K and every element £€K one has
BL*®t = wIBZ*)CK, where BZ+®¢ is a left ideal (trivial) which is com-
pact, hence closed in BZ* (image of BZ* under the continuous right



translation w), every minimal left ideal is closed. Hence the minimal left ideals
are the minimal elements of the partially ordered (under inclusion) set of all
closed left ideals, and a traditional Zorn argument shows that every closed left
ideal contains a minimal left ideal. However, the existence of minimal left
ideals will also follow from 3.4(ii) below in combination with Lemma 1.1. In
the proof of the proposition below, we shall use the notion of filter base. Those
who are not acquainted with this notion might want to read the definition in
Section 4 first.

3.4. PROPOSITION. Let M be a non-empty closed subset of B and let
¢€BZ*. Then the following equivalences are valid:
() M is invariant under T < M is a left ideal;
(ii) M is minimal under T <M is a minimal left ideal;
(iii) & is recurrent under T <InepZ*\Z1 9@t = §
(iv) & is almost periodic under T« 3 minimal left ideal M ‘teM.
Moreover, the element 7 in (iii) can always be assumed to be an idempotent.

PROOF. (i): M is invariant under T iff Z* @M CM, that is, wZ " ]CM
for every £e M. Since w; is continuous and M is closed, this is equivalent to
@BZTICM for every £ M, that is, BZ*®M CM.

(ii): Clear from ().

(iii): ‘=’. Let £€Q be recurrent. Then the family {R(§,U) U anbd of £} is a
filter base in Z*, which has an adherence point ne BZ",ie.neN{REU)U a
nbd of £) (the bar denotes closure in BZ*). We may assume that n€&Z".
Indeed, if £ is not periodic, then this filter base is not fixed, that is, no n €Z "
belongs to all sets R(£,U). Consequently, the point 7 does not belong to 2.1t
¢ is periodic, say with period n, then_the sequence {kn }; .n has an adherence
point nepZ™ \Z*. Clearly, 5 is in R(£,U) for every nbd U of £, that is, 7 is
an adherence point of the filter base. So in all cases we have an adherence
point neBZ*\ Z*. As the mapping w; is continuous, wgn) = n®¢ is an
adherence point of the filter_basis {R (£,U)€B§fU a nbd of §}. However,
R U)YDECU, hence n®EcU for every nbd U of & As BZ* is a Hausdorff
space, this implies that n®¢ = &

‘<" Let U be a nbd of £& As wfn) = & continuity of «; implies that there is a
nbd V of y such that wV]CU, that is, V®OECU. As Z" is dense in BZ7
and n540, ¥ may be chosen so that 0¢ ¥ NZ* &. Hence there exists n€Z ",
n=0 with T"¢€ U (any n €V suffices).

(iv) Clear from (ii) and 1.2.

In the case that £ is a recurrent point, (iii) shows that the subset {ne prt\z*
®¢ = £) is not empty. It is easily seen that this is a subsemigroup of BZT.
Finally, since it is the intersection of the closed sets BZ*\Z" and w; &
(again, by continuity of w), it is a non-empty, closed subsemigroup of pz*.
By Lemma 3.6 below, it contains an idempotent. [J

3.5. COROLLARY. For every idempotent NEBZT\Z and every element
¢eBZ™, W®¢ is recurrent under T, and in particular, v is recurrent under T. Ifq
is an idempotent in BZ*\Z", then v is almost periodic iff n belongs to a
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minimal left ideal. []

Remark. It can be shown that BZ* contains at least 2¢ different minimal left
ideals (c:= cardinality of R). Note that each minimal left ideal is included in
BZ*\ Z*. (Otherwise, its intersection with BZ*\Z* would be a proper
closed subideal; that BZ* \ Z* is a left ideal follows from the fact that «"
maps BZ*\ Z* into BZ+\ Z"* for each n€Z™. Cf. [12], 6.11.)

Since every minimal left ideal is a closed subsemigroup of BZ™, the lemma
below implies that every minimal left ideal contains at least one idempotent.
More about the structure of minimal left ideals can be found in [20]. At this
point it is instructive to observe that any minimal left ideal, as a minimal sub-
set of the dynamical system (BZ+,T), is the orbit closure of each of its points:
in particular, it is the orbit closure of an idempotent. Thus, the almost periodic
points of (8Z ,T') are just all points which are in the orbit closures of idempo-
tents neBZ* \ Z* which are situated in a minimal left ideal of SZ. In 3.8 it
will be shown that there exist idempotents in BZ* \ Z* that do not belong to
any minimal left ideal.

3.6. LEMMA. Let S be a compact Hausdorff space which has a (multiplica-
tively written) semigroup structure such that all right translations prpq: S —S
with q €S are continuous. Then S contains an idempotent.

PROOF ([7], [20]): By Zorn’s lemma, S contains a minimal closed non-
empty subsemigroup E. Let g €E. Then Eq is a closed (continuous image of
E under right translation) subsemigroup of E, so by minimality, Eq = E. In
particular, g €Eq, so W:= {p€E: pqg = q}# 9. Clearly, W is a subsemi-
group of E and, again by continuity of right translation over ¢, W is closed.
Now minimality of E implies W = E. In particular, g e W, that is, g9 = q.
O

Next, consider an arbitrary dynamical system (X,T). For every x €X, the
mapping_8,: n>T"x: Z*—X has a continuous extension 8 :pZ*—-X. Put
Téx: = 8,() for £€BZ™. This can be done for every x €X, so we obtain a
mapping T%:X X for every éeBZ*. (It can be shown that T¢ need not be
continuous for every §€BZ*.) By an argument very similar to the proof that
the operation @ in BZ™ is associative (see 3.2 above), it can be shown that
T"®% = T(T%x) for all x eX and ¢{nepZt. Thus,

VEineBZ T T = T7oT¢
This can be restated as follows: the given action of Z* on X (by means of
(n,x)»T"x) can be extended to an action of the semigroup SZ* on X. In this

situation, there are also relations between algebraic properties of the semigroup
(BZ*,®) and the dynamical properties of (X,T).

3.7. PROPOSITION. Let (X,T) be a dynamical system and let x €X. The
following equivalences are valid:

() x is recurrent < InePZ\Z ' Tx = x;

11



(i) x is almost periodic <X/ minimal left ideal M in BZ™ there is an idempo-
tent neM with T'x =x;

(iii) x is almost periodic <3 minimal left ideal M in BZ* such that T'x = x
for some neM;

Also, in (i) the element 1 may be assumed to be an idempotent.

PROOF. (i): Completely similar to 3.4(1).
(i) Assume that x is almost periodic, i.e. that O(x) is minimal. Let M be an
arbitrary minimal left ideal in BZ* i.e. a minimal subset of the dynamical sys-
tem (BZ*,T) (cf. 3.4). It is easy to check that the continuous function
8, :BZ* - X defined above satisfies 8, of = Te §,. So §, is a homomorphism
of dynamical systems from (8Z +.T) into (X,T). It follows that 8 [M] is a
closed invariant subset of X. However,

5, [M1CB,[BZ*] = 8,[Z%]1C8,[27] = O(x),

and by minimality of O(_x), 6, [M] = 5(_x$ In particular, x €8§,[M]. Stated
differently, the set {(neM:T"x = x} is not empty. Obviously, it is a subsemi-
group of M, and as 8 |, :n v T7x is continuous, it is closed. So by 3.6 above
it contains an idempotent. This proves one implication. The other implication
will follow from the proof of (iii).

(ili) If x is almost periodic, existence of M as wanted follows from the impli-
cation proved in (ii). Conversely, assume that 7"x = x for some element 7 of
some minimal left ideal. Then x €6,[M]. Since M is a minimal subset of
(BZ*,T) and 8, :(BZ*,T) —(X,T) is a homomorphism, the remark following
1.3 implies that §,[M] is a minimal subset of X. Since x €8,[M], 1.2 implies
that x is almost periodic. [l

3.8. Remark. In the shift system (£,06) we have observed the existence of a
point which is recurrent but not almost periodic. It follows immediately from
3.7 that this implies the existence of an idempotent in BZ* \ Z* which is not
contained in any minimal left ideal. Consequently, the dynamical system
(BZ*,T) also has a point which is recurrent but not almost periodic (cf. 3.5).

4. A characterization of idempotents in 72+ \ 7"

In this section, we study a particular model of BZ* in more detail. This will
enable us to give a nice description of idempotents in 8Z*. Using this, a very
short proof of Hindman’s theorem is possible. Our proof is different from
those in [8] and [9)]. Although in [11] a proof is also given using the Stone-Cech
compactification, that proof is different too. The theorem is as follows:

4.1. THEOREM (Hindman). Let Z* = 4,U..UA, with A;NA; = & for
i=j. Then one of the sets A; is an IP-set.

A set ACZ*' is called an IP-set whenever there exists a sequence
Xo<x|<x,<.. in 4 such that x,+..+x,€4 for every finite subset
{n\,.., n; } of different elements of Z". So an IP-set consists (at least) of a
non-decreasing sequence in Z* together with all sums of finitely many

12



elements of the sequence (no repetitions allowed).

The following model of BZ™" will be useful (for details, see e.g [12]). First,
recall that a filter in a set S is a family ¥ of subsets of S such that

() 29¢9%,;

(ii) if A ,B €9, then A NB €%

(i) if A €F and B is a subset of S such that A C B, then B €%.

A family B of subsets such that @ &% and for all 4,B €% there exists Ce®
with C CA NB is called a filter base. Note that if % is a filter base, then
{A CS:3B €% with 4 DB} is a filter. An ultrafilter in S is a filter which is
not properly contained in any other filter. The following characterization of
ultrafilters is rather easy to prove: if ¥ is a filter in S, then ¥ is an ultrafilter iff
for every subset A of S either 4 € or S \ 4 €%. Although we shall not need
it explicitly, it is essential for the proofs of the statements about BZ* below
that ultrafilters do exist: by Zorn’s lemma, every filter can be extended to an
ultrafilter. Examples of ultrafilters are e.g. the fixed ultrafilters, i.e. the filters
of the form {4 CS:s€A}, where s €S.

Points of BZ*: ultrafilters in Z*. The points of Z* will be identified with the
fixed ultrafilters; to be precise, the point n €Z" is identified with the ultrafilter

h(n):= {BCZ*neB).

Topology of BZ™ : a basis for the topology is given by the family of all subsets
of BZ* of the form

h(d):= ((eBZ™: 4 €§)

with 4 a subset of Z*. It can be shown that the sets h(4) for 4 CZ* are
both open and closed in fZ ™.
It follows from the definitions of #(4) for A CZ" and h(n) for n€Z™* that
h(4)NZ" is the set of all fixed ultrafilters A(n) with 4 €h(n), i.e. n€A.
Thus, if we identify n with h(n), then h(4)NZ* = 4.

If {eBZ*, then a nbd base of ¢ is given by the set of all open sets h(A4)
with A CZ* such that £éeh(A4), i.e. the set

Be:= (h(4): ACZ*& A€t} Q)

The trace B,NZ* of B, in Z* (i.e. the set of all intersections h(4)NZ* with
h(A)e%;) apparently consists of all sets 4 with 4 €£. This means that

BNL*" = ¢ Q)

Next, consider a mapping y:Z*—X, X a compact Hausdorff space Let
¥:BZ+ X be its continuous extenswn Consider £€BZ™" and put x:= (§).
For every open nbd U of x, \p U} includes an element of %, hence
¢ [UINZ* includes an element of £ As £ is a filter, Y UINZY itself
belongs to £ This shows that

VYU:U anbd of (&) in X = {meZ* y(m)cU}et 3)
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Using this, the operation @ in BZ" can be described as follows.

If neZ* and ¢€BZ™, then application of (3) to the mapping
W' mon+m: LT SZT CBZY gives, in view of (1) and (2):

VAen®¢: (mel” -n+med)et

For convenience, writt 4 — n:= {meZ' - n+med} =A@A—-n)N Z7
Then the above can be rewritten as: for all A CZ*:
Aen® t=>A4 - ne 4

(The converse can also be proved, but this will not be needed in the sequel.)
Next, apply (3) to the mapping w,: mo>m ®y: Z*—>pZ*, with nefZ”, and
find that for every nbd U of the image £®n of £€BZ™ under the extended
mapping, the set {meZ* : m®neU} belongs to & So by (1) and (2), if
ACZ™, then

Aet®y = (meZt - Aem®y}et (5)
Using (4), it follows that
(meZ*  Aem®y)C{meZ* . A~ mey).
As ¢ is a filter, it follows from (5) that
VACZ': Act®y = {meZ* . A~ men)et (6)

Finally, we need one more (trivial) observation: if £8Z* \ Z" and 4 €, then
A must be an infinite subset of Z*. Indeed, as £ is not a fixed ultrafilter, for
every n €Z” there is B, € such that n ¢B,. In particular, A N( ﬂAB,,) = @.

If A were finite, this would contradict the filter property of .
42. LEMMA. Let nefZ*\Z" be an idempotent. Then every A €n is an
IP-set.
PROOF. By (6) with £ = 7 and therefore {1 = 7Oy = n:
VBCZ':Ben= {meZ*B- men)en
So in particular, as 7 is a filter:
VBen: BN{meZ* : B-men}en

In view of the remark just before the lemma, this implies that for every B e€n
there are infinitely many elements m€Z™ such that meB and B — men.
Using this, one easily defines by induction for a given element 4€n a
sequence Xxg, X1, X, ... in A and elements A, €q (n €Z™) such that

()Ay:= A;

(ii) x, €4,, A, — x,€n and x, >x, _1;

(111) An+l:: An ﬁ(An - xn)'

Note that by the filter property of 1, if 4,€n and x, satisfies (ii), then
A 41€n. Also, as x,€A4, and the sequence {4,},.z* is decreasing,
x,€Ag = A forallnez*.
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Now consider n<n,<..<n; in Z*. Then n; . \=n; +1fori = 1,...k—1
hence

Ap. CAp+1CAn — X,
by (iii). This implies that
x, tA,., CA,.
By induction it follows that
Xp,totx,  +tx, CA,,CAy = A

So the sequence {x,},.z* in A has the required property with respect to 4.
a
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4.3. PROOF OF THEOREM 4.1. By 3.6, there exists an idempotent 1 in
the closed semigroup BZ*\ Z* of BZ*. Since 7 is an ultrafilter in Z™, there is
i €{1,..,q } such that B; eq (this follows with induction from the property that
for every subset B of Z*, either B enor Z* \ B €n). Now apply 42. [J

4.4. COROLLARY ([9)). If (X,T) is a dynamical system and x €X is a
recurrent point, then for every nbd U of x the set R(x,U) is an IP-set.

PROOF. In 3.7 we have observed that there exists an idempotent 7 in
BZ*\ Z" such that T7x = x. Since T"x = &, (1), where §, is the continuous
extension to BZ™ of the evaluation mapping 8,: n> T,x:Z" —X, it follows
from formula (3) above that for every nbd U of x in X:

(neZ*-8.(n)eU}en
This means exactly that R(x,U)en. Now apply 4.2. []

4.5. Remark. As an application of 4.4. one sees that if § is a recurrent
point in a shift dynamical system (,0), then for any block B which occurs in §
the set of numbers k €Z* such that B occurs in £ at place k is an IP-set.

5. Epilogue

The results and methods described above form only a minor part of ‘Abstract
Topological Dynamics’, by which I mean the part of the theory that was ini-
tiated by Gottschalk and Hedlund (cf. [10]). More of this theory can be found
in [6), [7), [8] and [5]. In [17] and the final chapters of [5] relations between the
abstract theory and differential equations are still visible. The theory in books
like [2), [3], [13], [16] and [18] is in much closer contact with the classical quali-
tative theory of differential equations.
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